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1. Introduction

1.1 General motivation for deforming spacetime

Relativistic quantum field theory is not a fundamental theory, since its formalism leads to

divergencies. In some cases like that of quantum electrodynamics one is able to overcome

the difficulties with the divergencies by applying the so-called renormalization procedure

due to Feynman, Schwinger and Tomonaga. Unfortunately, this procedure is not successful

if we want to deal with quantum gravity. Despite the fact that gravitation is a rather weak

interaction we are not able to treat it perturbatively. The reason for this lies in the fact,

that transition amplitudes of nth order to the gravitation constant diverge like a momentum

integral of the general form [1]
∫

p2n−1dp , (1.1)

leaving us with an infinite number of ultraviolet divergent Feynman diagrams that cannot

be removed by redefining finitely many physical parameters.
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It is surely legitimate to ask for the reason for these fundamental difficulties. It is

commonplace that the problems with the divergences in relativistic quantum field theory

result from an incomplete description of spacetime at very small distances [2]. Niels Bohr

and Werner Heisenberg have been the first who suggested that quantum field theories

should be formulated on a spacetime lattice [3, 4]. Such a spacetime lattice would imply

the existence of a smallest distance a with the consequence that plane-waves of wave-

length smaller than twice the lattice spacing could not propagate. In accordance with the

relationship between wave-length λ and momentum p of a plane-wave, i.e.

λ ≥ λmin = 2a ⇒
1

λ
∼ p ≤ pmax ∼

1

2a
, (1.2)

it follows then that physical momentum space would be bounded. Hence, the domain of

all momentum integrals in eq. (1.1) would be bounded as well with the consequence that

momentum integrals should take on finite values.

1.2 q-Deformation of symmetries as an attempt to get a more detailed descrip-

tion of nature

Discrete spacetime structures in general do not respect classical Poincaré symmetry. A

possible way out of this difficulty is to modify not only spacetime but also its corresponding

symmetries. How are we to accomplish this? First of all let us recall that classical spacetime

symmetries are usually described by Lie groups. Realizing that Lie groups are manifolds

the Gelfand-Naimark theorem tells us that Lie groups can be naturally embedded in the

category of algebras [5]. The utility of this interrelation lies in formulating the geometrical

structure of Lie groups in terms of a Hopf structure [6]. The point is that during the

last two decades generic methods have been discovered for continuously deforming matrix

groups and Lie algebras within the category of Hopf algebras. It is this development which

finally led to the arrival of quantum groups and quantum spaces [7 – 13].

From a physical point of view the most realistic and interesting deformations are given

by q-deformed versions of Minkowski space and euclidean spaces as well as their corre-

sponding symmetries, i.e. respectively Lorentz symmetry and rotational symmetry [14 – 18].

Further studies even allowed to establish differential calculi on these q-deformed quantum

spaces [19 – 21] representing nothing other than q-analogs of classical translational symme-

try. In this sense we can say that q-deformations of the complete euclidean and Poincaré

symmetries are now available [22]. Finally, Julius Wess and his coworkers were able to

show that q-deformation of spaces and symmetries can indeed leed to the wanted dis-

cretizations of the spectra of spacetime observables [23, 24], which nourishes the hope that

q-deformation might give a new method to regularize quantum field theories [25 – 28].

1.3 Foundations of q-deformed superanalysis

In order to formulate quantum field theories on q-deformed quantum spaces it is necessary

to provide us with some essential tools of a q-deformed analysis. The main question is

how to define these new tools, which should be q-analogs of classical notions. Towards this

end the considerations of Shahn Majid have proved very useful [29 – 31]. The key idea of
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his approach is that all the quantum spaces to a given quantum symmetry form a braided

tensor category. Consequently, operations and objects concerning quantum spaces must

rely on this framework of a braided tensor category, in order to guarantee their well-defined

behavior under quantum group transformations. This so-called principle of covariance can

be seen as the essential guideline for constructing a consistent theory.

In our previous work we have worked on symmetrized versions of quantum spaces that

are of particular importance in physics, i.e. Manin plane, q-deformed euclidean space with

three or four dimensions as well as q-deformed Minkowski space. In each case we have

presented explicit formulae for star-products [32], representations of symmetry generators

and partial derivatives [33], q-integrals [34], q-exponentials [35] and q-translations [36]. But

physics requires also antisymmetrized spaces, i.e. Grassmann algebras, since they consti-

tute an important tool in formulating supersymmetrical quantum field theories. In ref. [37]

we started showing that our ideas for symmetrized quantum spaces carry over to antisym-

metrized ones as well.

Our goal now is to continue that program by providing explicit formulae for q-analogs

of Grassmann integrals, Grassmann exponentials and Grassmann translations. In addition

to this we are going to present formulae for braided products with supernumbers telling

us how antisymmetrized quantum spaces have to be fused together with other quantum

spaces.

The paper is organized as follows. In section 2 we give a review of the concepts q-

deformed superanalysis is based on. Furthermore, we recall some important results of

ref. [37]. This is done to an extent necessary for our further studies. In section 3 we

explain in detail how our general considerations apply to Manin plane. In sections 4 and 5

we repeat the same steps as in section 3 for q-deformed euclidean spaces in three and

four dimensions, respectively. Section 6 is devoted to superanalysis on an antisymmetrized

version of q-deformed Minkowski. Finally, in section 7 we give a short conclusion und

provide the reader with some interesting remarks about our new objects.

2. Concepts of q-deformed superanalysis

As already mentioned, q-deformed superanalysis is formulated within the framework of

antisymmetrized quantum spaces. These quantum spaces are defined as modules of quasi-

triangular Hopf algebras which describe the underlying symmetry. For our purposes, it is

at first sufficient to consider an antisymmetrized quantum space as an algebra generated

by coordinates θ1, θ2, . . . , θn which are subjected to

θiθj = −k(R̂)ijklθ
kθl , k ∈ R

+ , (2.1)

where R̂ denotes a representation of the universal R-matrix assigned to the underlying

quantum symmetry. This way, we get nothing other than q-deformed versions of Grassman

algebras.

Moreover, it is important to realize that our antisymmetrized quantum spaces satisfy

the so-called Poincaré-Birkhoff-Witt property, i.e. the dimension of a subspace of homoge-

nous polynomials should be the same as for classical Grassmann variables. This property
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is the deeper reason why normal ordered monomials constitute a basis of our q-deformed

Grassmann algebras. Consequently, each supernumber can be represented in the general

form

f(θ) = f ′ +
∑

K
fK θ K , (2.2)

where θK denotes monomials of a given normal ordering.

For this to become more clear, the two-dimensional antisymmetrized quantum plane

shall serve as an example [38]. By specifying the R-matrix in eq. (2.1) to that of Uq(su2),

we obtain as defining relations of antisymmetrized Manin plane

(θ1)2 = (θ2)2 = 0 ,

θ1θ2 = −q−1θ2θ1 , (2.3)

showing the correct classical limit for q → 1. Due to these relations, each supernumber can

be written in the general form (notice that the normal ordering of monomials is indicated

by the order in which coordinates are arranged in the symbol for supernumbers)

f(θ2, θ1) = f ′ + f1θ
1 + f2θ

2 + f21θ
2θ1 , (2.4)

and the product of two such supernumbers finally becomes

(f · g)(θ2, θ1) = (f · g)′ + (f · g)1θ
1 + (f · g)2θ

2 + (f · g)21θ
2θ1 , (2.5)

with

(f · g)′ = f ′g′ ,

(f · g)α = fαg′ + f ′gα, α = 1, 2 ,

(f · g)21 = f2g1 − q−1f1g2 . (2.6)

Similar results hold for the other antisymmetrized quantum spaces we consider in this

article [37].

Next, we would like to come to the covariant differential calculi on our antisymmetrized

quantum spaces [19, 20, 39]. In complete accordance to symmetrized quantum spaces, there

exist always two covariant differential calculi. Their Leibniz rules take the general form

∂i
θθ

j = gij − k(R̂−1)ijkl θ
k∂l

θ , k ∈ C ,

∂̂i
θθ

j = gij − k−1(R̂)ijkl θ
k∂̂l

θ , (2.7)

where gij denotes the corresponding quantum metric (as reference, we provide a review of

key notations in appendix A). In the two-dimensional case, for example, the relations for

the first differential calculus read explicitly

∂1
θθ1 = −q−1θ1∂1

θ ,

∂1
θθ2 = −q−1/2 − θ2∂1

θ , (2.8)

∂2
θθ1 = q1/2 − θ1∂2

θ + λθ2∂1
θ ,
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∂2
θθ2 = −q−1θ2∂2

θ , (2.9)

where λ ≡ q − q−1, leading to the following actions on supernumbers [37]:

(∂θ)1 B f(θ2, θ1) = f1 − q−1f21θ
2 ,

(∂θ)2 B f(θ2, θ1) = f2 + f21θ
1 . (2.10)

However, in what follows it is necessary to take another point of view which is provided

by category theory. A category is a collection of objects X,Y,Z, . . . together with a set

Mor(X,Y ) of morphisms between two objects X,Y . The composition of morphisms has

similar properties as the composition of maps. We are interested in tensor categories.

These categories have a product, denoted ⊗ and called the tensor product. It admits

several ’natural’ properties such as associativity and existence of a unit object. For a more

formal treatment we refer to refs. [29, 30, 40] or [41]. If the action of a quasitriangular

Hopf algebra H on the tensor product of two quantum spaces X and Y is defined by

h . (v ⊗ w) = (h(1) . v) ⊗ (h(2) . w) ∈ X ⊗ Y , h ∈ H , (2.11)

where the coproduct is written in the so-called Sweedler notation, i.e. ∆(h) = h(1) ⊗ h(2),

then the representations (quantum spaces) of the given Hopf algebra (quantum algebra)

are the objects of a tensor category.

In this tensor category exist a number of morphisms of particular importance that are

covariant with respect to the Hopf algebra action. First of all, for any pair of objects X,Y

there is an isomorphism ΨX,Y : X⊗Y → Y ⊗X such that (g⊗f)◦ΨX,Y = ΨX′,Y ′◦(f⊗g) for

arbitrary morphisms f ∈ Mor(X,X ′) and g ∈ Mor(Y, Y ′). In addition to this one requires

the hexagon axiom to hold. The hexagon axiom is the validity of the two conditions

ΨX,Y ◦ ΨY,Z = ΨX⊗Y,Z , ΨX,Z ◦ ΨX,Y = ΨX,Y ⊗Z . (2.12)

A tensor category equipped with such mappings ΨX,Y for each pair of objects X,Y is

called a braided tensor category. The mappings ΨX,Y as a whole are often referred to as

the braiding of the tensor category. Furthermore, for any quantum space algebra X in this

category there are morphisms ∆ : X → X ⊗ X, S : X → X and ε : X → C forming a

braided Hopf algebra, i.e. ∆, S and ε obey the usual axioms of a Hopf algebra, but now as

morphisms in the braided category. For further details we recommend refs. [40] and [42].

The explicit form of these morphisms is completely determined by the so-called L-

matrix [12, 22, 43]. The entries of the L-matrix are built up out of symmetry generators

and scaling operators. For the quantum spaces we study in this article, the explicit form

of the L-matrix can be looked up in ref. [37]. To be more concrete, we give as example the

non-vanishing entries of the L-matrix and its conjugate in the case of Manin plane:

(La)
1
1 = Λ(a)τ−1/4 ,

(La)
2
1 = −qλΛ(a)τ−1/4T+,

(La)
2
2 = Λ(a)τ1/4, (2.13)
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and likewise

(L̄a)
1
1 = Λ−1(a)τ1/4 ,

(L̄a)
1
2 = −q−1λΛ−1(a)τ−1/4T− ,

(L̄a)
2
2 = Λ−1(a)τ1/4 , (2.14)

where τ±1/4, T± and Λ(a) denote generators of the quantum algebra Uq(su2) and a unitary

scaling operator, respectively.

Using the L-matrix and its conjugate, the two distinct braidings of a quantum space

generator ai can be obtained in the compact form

ΨX,Y (ai ⊗ f) = ((L̄a)
i
j . f) ⊗ aj ,

Ψ−1
X,Y (ai ⊗ f) = ((La)

i
j) . f) ⊗ aj (2.15)

ΨX,Y (f ⊗ ai) = aj ⊗ (f / (La)
i
j) ,

Ψ−1
X,Y (f ⊗ ai) = aj ⊗ (f / (L̄a)

i
j) . (2.16)

There remains to evaluate the action of the L-matrix on the quantum space element f.

This can be achieved by making use of the representations presented in refs. [33] and [37].

By repeated use of the identities in eq. (2.15) we are able to calculate the braiding

between a monomial in Grassmann variables θi and an arbitrary element g of another

quantum space, i.e.

(θi . . . θj)¯L̄ g ≡ Ψ(θi . . . θj ⊗ g)

=
(

(L̄θ)
i
ki

. . . (L̄θ)
j
kj

B g
)

⊗ (θki . . . θkj),

(θi . . . θj)¯L g ≡ Ψ−1(θi . . . θj ⊗ g)

=
(

(Lθ)
i
ki

. . . (Lθ)
j
kj

B g
)

⊗ (θki . . . θkj), (2.17)

g ¯R (θi . . . θj) ≡ Ψ(g ⊗ θi . . . θj)

= (θki . . . θkj) ⊗
(

g C (Lθ)
i
ki

. . . (Lθ)
j
kj

)

,

g ¯R̄ (θi . . . θj) ≡ Ψ−1(g ⊗ θi . . . θj)

= (θki . . . θkj) ⊗
(

g C (L̄θ)
i
ki

. . . (L̄θ)
j
kj

)

. (2.18)

Recalling that the braiding mappings are linear in their arguments, it should be quite clear

that the braiding of a supernumber with an arbitrary element g is completely determined

by the above identities. In the subsequent sections this observation will enable us to derive

explicit formulae for the braiding of supernumbers with arbitrary quantum space elements.

The resulting expressions are referred to as braided products for supernumbers.

Using L-matrices, the coproducts for quantum space generators ai can be obtained in

the general form

∆L̄(ai) = ai ⊗ 1 + (L̄a)
i
j ⊗ aj ,
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∆L(ai) = ai ⊗ 1 + (La)
i
j ⊗ aj , (2.19)

and the corresponding antipodes are then given by (if we assume for the counit ε(θi) = 0)

SL̄(θi) = −S(L̄θ)
i
j θj ,

SL(θi) = −S(Lθ)
i
j θj . (2.20)

The essential observation for this paper is that coproducts of coordinates imply their trans-

lations [22, 44 – 46]. This can be seen as follows. The coproduct ∆ on coordinates is an

algebra homomorphism. If the coordinates constitute a module coalgebra then the algebra

structure of the coordinates ai is carried over to their coproduct ∆(ai). More formally, we

have

∆(aiaj) = ∆(ai)∆(aj) and ∆(h B ai) = ∆(h) B ∆(ai) . (2.21)

Due to this fact we can think of (2.19) as nothing other than an addition law for q-deformed

vector components. In this article we use this fact to derive translation operations for q-

deformed supernumbers.

Next, let us make contact with another important ingredient of q-deformed superanal-

ysis, i.e. q-deformed Grassmann exponential. For this purpose we have to suppose that

our category is equipped with a dual object X∗ for each algebra X in the category. This

means that we have dual pairings

〈 , 〉 : X ⊗ X∗ → C with 〈ea, f
b〉 = δb

a , (2.22)

where {ea} is a basis in X and {fa} a dual basis in X∗. Now, we are able to introduce an

exponential map [44] which is defined to be the dual object of (2.22). Thus, the exponential

is given by

exp : C → X∗ ⊗ X , with exp =
∑

a

fa ⊗ ea . (2.23)

It was shown in ref. [31] that there is such a dual pairing of Grassmann variables and

corresponding partial derivatives. Specifically, we have

〈 , 〉 : M∂ ⊗Mθ → C with 〈f(∂θ), g(θ)〉 ≡ ε(f(∂θ) B g(θ)) . (2.24)

If we know a basis of the coordinate algebra Mθ being dual to a given one of M∂ , then

we will be able to read off from the definition in eq. (2.23) the explicit form of the q-

exponentials. This task will be done in the subsequent sections for all quantum spaces

under consideration.

3. Two-dimensional quantum plane

In this section we present explicit formulae for elements of q-deformed superanalysis on

antisymmetrized Manin plane (for its definition see also appendix A). To begin with,

we introduce the notion of a left-superintegral. With the partial derivatives obeying the

relations in eq. (2.8) this can be done in complete analogy to the undeformed case:
∫

f(θ2, θ1) d2
Lθ ≡ (∂θ)1(∂θ)2 B f(θ2, θ1) = f21 . (3.1)

– 7 –
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This integral shows the same properties as its classical counterpart. Thus, it is linear,

normed and translationally invariant. Linearity is clear because of the linearity of the

derivatives and the other two properties follow from its very definition, since we have
∫

θ2θ1 d2
Lθ = 1 ,

∫

θα d2
Lθ =

∫

d2
Lθ = 0 , α = 1, 2 , (3.2)

and ∫

(∂θ)α B f(θ2, θ1) d2
Lθ = 0 , α = 1, 2 . (3.3)

We could also have started our considerations with the conjugated partial deriva-

tives (∂̂θ)α whose representations are linked to those in (2.10) via the correspondence (see

ref. [37])

(∂̂θ)α B̄ f(θ1, θ2)
α↔α′

q↔1/q
←→ −(∂θ)α′ B f(θ2, θ1), (3.4)

where α′ = 3 − α. The symbol
α↔α′

q↔1/q
←→ denotes a transition between the two expressions via

the substitutions

θα
α↔α′

q↔1/q
←→ θα′

, θαθβ
α↔α′

q↔1/q
←→ θα′

θβ′

, q
α↔α′

q↔1/q
←→ q−1 ,

f
′

α↔α′

q↔1/q
←→ f ′ , fα

α↔α′

q↔1/q
←→ fα′ , fαβ

α↔α′

q↔1/q
←→ fα′β′ , α, β = 1, 2 . (3.5)

The corresponding superintegral then becomes
∫

f(θ1, θ2) d2
L̄θ ≡ (∂̂θ)2(∂̂θ)1 B̄ f(θ1, θ2) = f12 . (3.6)

Notice that in eqs. (3.1) and (3.6) the subscripts at the integration measure help us to dis-

tinguish the two types of superintegrals. Using the action of conjugated partial derivatives

on Grassmann variables, it is again straightforward to show that
∫

θ1θ2 d2
L̄θ = 1 ,

∫

θα d2
L̄θ =

∫

d2
L̄θ = 0 , α = 1, 2, (3.7)

and ∫

(∂θ)α B̄ f(θ1, θ2) d2
L̄θ = 0 , α = 1, 2 . (3.8)

However, superintegrals can also be constructed from partial derivatives acting on a

supernumber from the right. Let us recall that left and right derivatives are related to each

other by (see ref. [37])

f(θ1, θ2) C (∂̂θ)α
α↔α′

←→ −(∂̂θ)α′ B̄ f(θ1, θ2) ,

f(θ2, θ1) C̄ (∂θ)α
α↔α′

←→ −(∂θ)α′ B f(θ2, θ1), (3.9)

where
α↔α′

←→ now stands for the transition

θα α↔α′

←→ θα′ , θαθβ α↔α′

←→ θβ′

θα′

,
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f ′ α↔α′

←→ f ′ , fα α↔α′

←→ fα′ , fαβ α↔α′

←→ fβ′α′

. (3.10)

Using right derivatives, we can proceed in very much the same way as was done for left

derivatives. This way we introduce
∫

d2
Rθ f(θ1, θ2) ≡ f(θ1, θ2) C (∂̂θ)2(∂̂θ)1 = f12 ,

∫

d2
R̄θ f(θ2, θ1) ≡ f(θ2, θ1) C̄ (∂θ)1(∂θ)2 = f21 . (3.11)

The new definitions lead immediately to
∫

d2
Rθ θ1θ2 = 1 ,

∫

d2
Rθ θα =

∫

d2
Rθ = 0 ,

∫

d2
R̄θ θ2θ1 = 1 ,

∫

d2
R̄θ θα =

∫

d2
R̄θ = 0 , α = 1, 2 , (3.12)

and
∫

d2
Rθ f(θ1, θ2) C ∂̂α

θ = 0 ,
∫

d2
R̄θ f(θ2, θ1) C̄ ∂α = 0 , α = 1, 2 . (3.13)

Next, we come to the q-deformed superexponential. For its calculation we need to

know the dual pairing between partial derivatives and coordinates. Explicitly, we have as

non-vanishing expressions

〈(∂θ)2, θ
2〉L,R̄ = 〈(∂θ)1, θ

1〉L,R̄ = 〈(∂θ)1(∂θ)2, θ
2θ1〉L,R̄ = 1 , (3.14)

which follow from the very definition of the dual pairing together with the action of partial

derivatives on Grassmann variables. From the above result we can at once read off the

elements of the two bases being dual to each other. Inserting these elements into the general

formulae for the exponential in eq. (2.23) we obtain as explicit form of the q-deformed

superexponential on Manin plane

exp(θR̄ | (∂θ)L) = 1 ⊗ 1 + θ1 ⊗ (∂θ)1 + θ2 ⊗ (∂θ)2 + θ2θ1 ⊗ (∂θ)1(∂θ)2 . (3.15)

Repeating the same steps as before for the conjugated partial derivatives we get instead

〈(∂̂θ)1, θ
1〉L̄,R = 〈(∂̂θ)2, θ

2〉L̄,R = 〈(∂̂θ)2(∂̂θ)1, θ
1θ2〉L̄,R = 1 , (3.16)

and consequently

exp(θR | (∂̂θ)L̄) = 1 ⊗ 1 + θ1 ⊗ (∂̂θ)1 + θ2 ⊗ (∂̂θ)2 + θ1θ2 ⊗ (∂̂θ)2(∂̂θ)1 . (3.17)

The above two results together with those corresponding to unconjugated partial deriva-

tives establish the correspondences

〈∂θ, θ〉L,R̄

α↔α′

q↔1/q
←→ 〈∂̂θ, θ〉L̄,R ,

– 9 –
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exp(θR̄ | (∂θ)L)
α↔α′

q↔1/q
←→ exp(θR | (∂̂θ)L̄) , (3.18)

where the symbol
α↔α′

q↔1/q
←→ now denotes a transition via

θα ↔ θα′

, (∂θ)α ↔ (∂̂θ)α′ , q ↔ q−1 . (3.19)

The above considerations on dual pairings and superexponentials are based on the use

of left derivatives, but they carry over to right derivatives as well with a few necessary

modifications. Towards this end, we have to realize that the definitions

〈f(θ), g(∂θ)〉L,R̄ ≡ ε(f(θ) C̄ g(∂θ)) ,

〈f(θ), g(∂̂θ)〉L̄,R ≡ ε(f(θ) C g(∂̂θ)) , (3.20)

give a dual pairing as well. Now, we can repeat the same resonings as above. This way we

get

〈θ1, ∂
1
θ 〉L,R̄ = 〈θ2, ∂

2
θ 〉L,R̄ = 〈θ1θ2, ∂

2
θ∂1

θ 〉L,R̄ = 1 ,

〈θ1, ∂̂
1
θ 〉L̄,R = 〈θ2, ∂̂

2
θ 〉L̄,R = 〈θ2θ1, ∂̂

1
θ ∂̂2

θ 〉L̄,R = 1 , (3.21)

and

exp((∂θ)R̄ | θL) = 1 ⊗ 1 + ∂1
θ ⊗ θ1 + ∂2

θ ⊗ θ2 + ∂2∂1 ⊗ θ1θ2 ,

exp((∂̂θ)R | θL̄) = 1 ⊗ 1 + ∂̂1
θ ⊗ θ1 + ∂̂2

θ ⊗ θ2 + ∂̂1∂̂2 ⊗ θ2θ1 . (3.22)

Comparing these results to those for left derivatives shows us the existence of the crossing

symmetries

〈θ, ∂θ〉L,R̄
α↔α′

←→ 〈∂θ, θ〉L,R̄ ,

〈θ, ∂̂θ〉L̄,R
α↔α′

←→ 〈∂̂θ, θ〉L̄,R , (3.23)

and

exp((∂θ)R̄ | θL)
α↔α′

←→ exp(θR̄ | (∂θ)L) ,

exp((∂̂θ)R | θL̄)
α↔α′

←→ exp(θR | (∂̂θ)L̄) , (3.24)

where
α↔α′

←→ indicates one of the following two substitutions:

a) (∂θ)α ↔ θα , θα ↔ ∂α
θ ,

b) (∂̂θ)α ↔ θα , θα ↔ ∂̂α
θ . (3.25)

Next, we would like to deal with Grassmann translations. As was pointed out in

section 2 translations on quantum spaces are described by the coproduct, which on spinor

coordinates reads [37]

∆L̄(θ1) = θ1 ⊗ 1 + Λ̃τ1/4 ⊗ θ1 + q−1λΛ̃τ−1/4T− ⊗ θ2 ,
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∆L̄(θ2) = θ2 ⊗ 1 + Λ̃τ−1/4 ⊗ θ2 . (3.26)

Notice that τ, T+ and Λ̃ denote generators of Uq(su(2)) and a scaling operator, respectively.

Now, we can follow the same reasonings already applied in ref. [36]. In this manner the

coproduct is split into two parts by introducing left and right coordinates:

∆L̄(θα) = θα ⊗ 1 + (L̄θ)
α
β ⊗ θβ = θα

l + θα
r , (3.27)

where

θα
l ≡ θα

l ⊗ 1 , θα
r ≡ (L̄θ)

α
β ⊗ θβ , α = 1, 2 . (3.28)

Since the entries of the L-matrix are built up out of symmetry generators, the commutation

relations between right and left coordinates can be derived in a straightforward manner

from the commutation relations between symmetry generators and Grassmann variables

(their explicit form was given in ref. [37]). It follows that

θ1
rθ

1
l = −θ1

l θ
1
r ,

θ1
rθ

2
l = −q−1θ2

l θ
1
r − q−1λθ1

l θ
2
r ,

θ2
rθ

1
l = −q−1θ1

l θ
2
r ,

θ2
rθ

2
l = −θ2

l θ
2
r . (3.29)

Furthermore, these relations imply

∆L̄(θ2θ1) = ∆L̄(θ2)∆L̄(θ1) = (θ2
l + θ2

r)(θ
1
l + θ1

r)

= θ2
l θ

1
l + θ2

l θ
1
r + θ2

rθ
1
l + θ2

rθ
1
r

= θ2
l θ

1
l + θ2

l θ
1
r − q−1θ1

l θ
2
r + θ2

rθ
1
r . (3.30)

Notice that in the last step we have switched all right coordinates to the right of all left

coordinates. Now, we are in a position to read off from the above results the explicit form

of a Grassmann translation. Specifically, it becomes for a supernumber written in the form

of eq. (2.4)

f(θ⊕L̄ψ) ≡ f(θ2
l + θ2

r , θ
2
l + θ1

r)
∣

∣

θα
l → θα, θα

r →Ψα

=
[

f ′ + f1(θ
1 + ψ1) + f2(θ

2 + ψ2) + f21(θ
2
l + θ2

r)(θ
2
l + θ1

r)
]

θα
l → θα, θα

r →Ψα

= f ′ + f1(θ
1 + ψ1) + f2(θ

2 + ψ2) + f21(θ
2θ1 + θ2ψ1 − q−1θ1ψ2 + ψ2ψ1) . (3.31)

For a proper understanding of the definition above, one should realize that substitutions

can only be performed after all right coordinates have been commuted to the right of an

expression.

In order to introduce translations in the opposite direction we need to consider the

antipode corresponding to the coproducts in eq. (3.26). On spinor coordinates this antipode

takes the form [37]

SL̄(θ1) = −Λ̃−1τ−1/4θ1 + q−2λΛ̃−1τ−1/4T−θ2 ,
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SL̄(θ2) = Λ̃−1τ1/4θ2 . (3.32)

However, what we are looking for is an antipode in terms of right or left coordinates. To

achieve this, we have to exploit the Hopf algebra axiom

m ◦ (S ⊗ id) ◦ ∆ = m ◦ (id ⊗ S) ◦ ∆ = ε , (3.33)

where m denotes multiplication in the Grassmann algebra. If we substitute for the coprod-

uct the expressions in eqs. (3.27) and (3.30), we arrive at

SL̄(θα) + θα = θα + SL̄(θα) = 0 , α = 1, 2 , (3.34)

and

SL̄(θ2θ1) + SL̄(θ2) θ1 − q−1SL̄(θ1) θ2 + θ2θ1 =

θ2θ1 + θ2SL̄(θ1) − q−1θ1SL̄(θ2) + SL̄(θ2θ1) = 0 . (3.35)

This system of equations can be solved for SL̄(θα), α = 1, 2, and SL̄(θ2θ1), leaving us with

SL̄(θα) = −θα , α = 1, 2 ,

SL̄(θ2θ1) = q−2θ2θ1 . (3.36)

Finally, the last results allow us to introduce the following operation on supernumbers:

f(ªL̄θ) ≡ SL̄

(

f(θ2, θ1)
)

= f ′ + f1 SL̄(θ1) + f2 SL̄(θ2) + f21 SL̄(θ2θ1)

= f ′ − f1θ
1 − f2θ

2 + q−2f21θ
2θ1 . (3.37)

Our considerations about translations can also be applied to the opposite Hopf struc-

ture given by

∆R̄ ≡ τ ◦ ∆L̄ , SR̄ ≡ S−1
L̄

, (3.38)

where τ denotes transposition of tensor factors. Right and left coordinates are now defined

by

θα
l ≡ θβ ⊗ (L̄θ)

α
β , θα

r ≡ 1 ⊗ θα . (3.39)

Then we have for coproduct and antipode respectively

∆R̄(θα) = θα
l + θα

r , α = 1, 2 ,

∆R̄(θ1θ2) = θ1
l θ

2
l + θ1

l θ
2
r − qθ2

l θ
1
r + θ1

rθ
2
r , (3.40)

and

SR̄(θα) = −θα , α = 1, 2 ,

SR̄(θ1θ2) = q2θ1θ2 . (3.41)

Consequently, we find as corresponding operations on supernumbers

f(θ⊕R̄ψ) =f ′ + f1(θ
1 + ψ1) + f2(θ

2 + ψ2)+
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+ f12(θ
1θ2 + θ1ψ2 − qθ2ψ1 + ψ1ψ2) ,

f(ªR̄θ) = f ′ − f1θ
1 − f2θ

2 + q2f12θ
1θ2 . (3.42)

From what we have done so far we can easily derive the crossing symmetries

∆R̄, SR̄,⊕R̄,ªR̄

α↔α′

q↔1/q
←→ ∆L̄, SL̄,⊕L̄,ªL̄ , (3.43)

with the transition symbol having the same meaning as in eq. (3.18).

It would have been possible to begin with the other Hopf structure by starting with

the coproducts ∆L, ∆R and the antipodes SL, SR. However, the expressions for the corre-

sponding operations ⊕L, ªL and ⊕R, ªR are obtained most easily by the transformation

rules

∆L, SL,⊕L,ªL

a↔α′

q↔1/q
←→ ∆L̄, SL̄,⊕L̄,ªL̄ ,

∆R, SR,⊕R,ªR

α↔α′

q↔1/q
←→ ∆R̄, SR̄,⊕R̄,ªR̄ , (3.44)

as can be proven by a direct calculation.

Our final comment concerns commutation relations between supernumbers and arbi-

trary elements of other quantum spaces. In section 2 we called formulae for calculating

such relations braided products. Recalling the identities in (2.17), we can conclude that

braided products for supernumbers take on the form

f(θ2, θ1) ¯L g = g ⊗ f ′ + fα

(

(Lθ)
α
β B g

)

⊗ θβ + f21

(

(Lθ)
2
γ(Lθ)

1
δ B g

)

⊗ θγθδ ,

g ¯R f(θ2, θ1) = f ′ ⊗ g + θβ ⊗
(

g C (Lθ)
α
β

)

fα +
(

g C (Lθ)
2
γ(Lθ)

1
δ

)

⊗ θγθδ , (3.45)

and likewise for the other braiding with the L-operator now substituted by its conjugate.

Notice that in the last two identities summation over all repeated indices is to be under-

stood. After having inserted the explicit form of the L-operator and then rearranging,

it follows that (for compactness, we have abbreviated monomials of ordering θ2θ1 by the

symbol θK)

f(θ2, θ1) ¯L/L̄ g = g ⊗ f ′ +
∑

K

(

(Of )
K

L/L̄
B g

)

⊗ θ K ,

g ¯R/R̄ f(θ2, θ1) = f ′ ⊗ g +
∑

K
θ K ⊗

(

g C (Of )
K

L/L̄

)

, (3.46)

where

(Of )1L = Λ̃−1τ−1/4(f1 − qλf2T
+) ,

(Of )2L = Λ̃−1τ1/4f2, (3.47)

(Of )21L = Λ̃−2 , (3.48)

and

(Of )1
L̂

= Λ̃τ1/4f1 ,

(Of )2L̄ = Λ̃τ−1/4(f2 + q−1λf1T
−) , (3.49)

(Of )21L̄ = Λ̃2 . (3.50)
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4. Three-dimensional q-deformed euclidean space

The three-dimensional antisymmetrized euclidean space (for its definition see again ap-

pendix A) can be treated in very much the same way as the two-dimensional quantum

plane. Thus we restrict ourselves to stating the results, only. In complete analogy to the

two-dimensional case we define left and right Grassmann integrals by
∫

f(θ+, θ3, θ−) d3
Lθ ≡ (∂θ)−(∂θ)3(∂θ)+ B f(θ+, θ3, θ−) = f+3− ,

∫

d3
Rθ f(θ−, θ3, θ+) ≡ f(θ−, θ3, θ+) / (∂̂θ)+(∂̂θ)3(∂̂θ)− = f−3+ , (4.1)

where the actions of partial derivatives have been calculated in ref. [37]. Again this defini-

tion has the consequence that
∫

θ+θ3θ− d3
Lθ = 1 ,

∫

1 d3
Lθ =

∫

θA d3
Lθ = 0 ,

∫

θ+θ3 d3
Lθ =

∫

θ+θ− d3
Lθ =

∫

θ3θ− d3
Lθ = 0 , (4.2)

(we take the convention that labels which are not specified any further can take on any of

their possible values, i.e. in our case A ∈ {+, 3,−}) and
∫

d3
Rθ θ−θ3θ+ = 1 ,

∫

d3
Rθ 1 =

∫

d3
Rθ θA = 0 ,

∫

d3
Rθ θ3θ+ =

∫

d3
Rθ θ−θ+ =

∫

d3
Rθ θ−θ3 = 0 . (4.3)

As usual, translational invariance is then given by
∫

(∂θ)A B f(θ+, θ3, θ−) d3
Lθ = 0 ,

∫

d3
Rθ f(θ−, θ3, θ+) C (∂̂θ)A = 0 . (4.4)

The corresponding expressions arising from the conjugated differential calculus are obtained

from the above ones most easily by applying the substitutions

d3
Lθ ↔ d3

L̄θ , d3
Rθ ↔ d3

R̄θ ,

f(θ+, θ3, θ−) ↔ f(θ−, θ3, θ+) ,

θA ↔ θĀ , (∂θ)A ↔ (∂̂θ)Ā ,

B ↔ B̄ , C ↔ C̄ , (4.5)

where we have introduced indices with bar by setting

(+, 3,−) = (−, 3,+) . (4.6)

For this substitution to become more clear we give as an example
∫

(∂θ)+ . f(θ+, θ3, θ−) d3
Lθ ↔

∫

(∂̂θ)− .̄ f(θ−, θ3, θ+) d3
L̄θ . (4.7)
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Next we come to the superexponentials. From the pairings

〈(∂θ)−, θ−〉L,R̄ = 〈(∂θ)3, θ
3〉L,R̄ = 〈(∂θ)+, θ+〉L,R̄ = 1 ,

〈(∂θ)−(∂θ)3, θ
3θ−〉L,R̄ = 1, 〈(∂θ)−(∂θ)+, θ+θ−〉L,R̄ = 1 ,

〈(∂θ)3(∂θ)+, θ+θ3〉L,R̄ = 1, 〈(∂θ)−(∂θ)3(∂θ)+, θ+θ3θ−〉L,R̄ = 1 , (4.8)

we can read off for the exponential an expression which is the same as in the undeformed

case:

exp(θR̄ | (∂θ)L) = 1 ⊗ 1 + θ+ ⊗ (∂θ)+ + θ3 ⊗ (∂θ)3+

+ θ− ⊗ (∂θ)− + θ+θ3 ⊗ (∂θ)3(∂θ)+ + θ+θ− ⊗ (∂θ)−(∂θ)++

+ θ3θ− ⊗ (∂θ)−(∂θ)3 + θ+θ3θ− ⊗ (∂θ)−(∂θ)3(∂θ)+ . (4.9)

In complete accordance with the considerations of the previous section we found as crossing

symmetries

〈∂̂θ, θ〉L̄,R

+↔−

q↔1/q
←→ 〈∂θ, θ〉L,R̄ ,

〈θ, ∂̂θ〉L̄,R

+↔−

q↔1/q
←→ 〈θ, ∂θ〉L,R̄ , (4.10)

〈∂̂θ, θ〉L̄,R
+↔−
←→ 〈θ, ∂̂θ〉L̄,R ,

〈∂θ, θ〉L,R̄
+↔−
←→ 〈θ, ∂θ〉L,R̄ , (4.11)

and

exp(θR | (∂̂θ)L̄)
+↔−

q↔1/q
←→ exp(θR̄ | (∂θ)L) ,

exp((∂̂θ)R | θL̄)
+↔−

q↔1/q
←→ exp((∂θ)R̄ | θL) , (4.12)

exp(θR | (∂̂θ)L̄)
+↔−
←→ exp((∂̂θ)R | θL̄) ,

exp(θR̄ | (∂θ)L)
+↔−
←→ exp((∂θ)R̄ | θL) . (4.13)

The symbol
+↔−

q↔1/q
←→ now denotes a transition via

θA ↔ θĀ , θA ↔ θĀ , q ↔ q−1 ,

(∂θ)
A ↔ (∂̂θ)

Ā , (∂θ)A ↔ (∂̂θ)Ā , (4.14)

whereas
+↔−
←→ stands for one of the following two substitutions:

(a) θA ↔ ∂̂A, ∂̂A ↔ θA ,

(b) θA ↔ ∂A, ∂A ↔ θA . (4.15)

Now we concentrate our attention on the Hopf structure for Grassmann variables.

With its explicit form given in ref. [37] we can show that on a basis of normal ordered

monomials the expressions for the coproduct become

∆L(θA) = θA
l + θA

r , (4.16)
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∆L(θ−θ3) = θ−l θ3
l + θ−l θ3

l − q2θ3
l θ

−
r + θ−r θ3

r ,

∆L(θ−θ+) = θ−l θ+
l + θ−l θ+

r − q4θ+
l θ−r + θ−r θ+

r ,

∆L(θ3θ+) = θ3
l θ

+
l + θ3

l θ
+
r − q2θ+

l θ3
r + θ3

rθ
+
r , (4.17)

∆L(θ−θ3θ+) = θ−l θ3
l θ

+
l + θ−l θ3

l θ
+
r + q6θ3

l θ
+
l θ−r − q2θ−l θ+

l θ3
r+

+ θ−l θ3
rθ

+
r − q2θ3

l θ
−
r θ+

r + q6θ+
l θ−r θ3

r + θ−r θ3
rθ

+
r . (4.18)

Notice that right and left coordinates are defined in complete analogy to the two-dimen-

sional case. The above results are consistent with the antipodes

SL(θA) = −θA ,

SL(θ−θ3) = q4θ−θ3 , SL(θ−θ+) = q4θ−θ+ ,

SL(θ3θ+) = q4θ3θ+, SL(θ−θ3θ+) = q8θ−θ3θ+ . (4.19)

Making use of the crossing symmetries

∆L, SL

+↔−

q↔1/q
←→ ∆L̄, SL̄ ,

∆R, SR

+↔−

q↔1/q
←→ ∆R̄, SR̄ , (4.20)

∆L, SL

+↔−

q↔1/q
←→ ∆R, SR ,

∆L̄, SL̄

+↔−

q↔1/q
←→ ∆R̄, SR̄ , (4.21)

we are able to find the corresponding expressions for the other types of Hopf structures.

Now, the explicit form of the q-deformed addition law for supernumbers should be rather

apparent from what we have done so far. Thus it is left to the reader to write down the

explicit form of the operations ⊕ and ª.

We conclude this section by presenting explicit formulae for braided products con-

cerning supernumbers represented in the form of eq. (2.2), where θ K shall now denote

monomials of ordering θ+θ3θ−. Explicitly, we have

f(θ+, θ3, θ−)¯L/L̄ g = g ⊗ f ′ +
∑

K

(

(Of )
K

L/L̄
B g

)

⊗ θ K ,

g¯R/R̄ f(θ+, θ3, θ−) = f ′ ⊗ g +
∑

K
θ K ⊗

(

g C (Of )
K

L/L̄

)

, (4.22)

where we introduced abbreviations for the following combinations of Uq(su2)-generators:

(Of )+L = Λ̃−1f+τ1/2 ,

(Of )3L = Λ̃−1(f3 + qλλ+f+τ1/2L+) ,

(Of )−L = Λ̃−1(f−τ1/2 + λλ+f3L
+ + q2λ2λ+f+τ1/2(L+)2) , (4.23)

(Of )+3
L = Λ̃−2f+3τ

1/2 ,

(Of )+−
L = Λ̃−2(f+− + q2λλ+f+3τ

1/2L+) ,
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(Of )3−L = Λ̃−2(f3−τ−1/2 − q−1λλ+f+−L++

+ q2λ2λ+f+3τ
1/2(L+)2) , (4.24)

(Of )+3−
L = Λ̃−3f+3− , (4.25)

and likewise for the second braiding

(Of )+
L̄

= Λ̃(f+τ−1/2 + λλ+f3L
− + q−2λ2λ+f−τ1/2(L−)2) ,

(Of )3L̄ = Λ̃(f3 + q−1λλ+f−τ1/2L−) ,

(Of )−
L̄

= Λ̃f−τ−1/2 , (4.26)

(Of )+3
L̄

= Λ̃2(f+3τ
−1/2 − q−1λλ+f+−L−+

+ q−2λ2λ+f3−τ1/2(L−)2) ,

(Of )+−
L̄

= Λ̃2(f+− + λλ+f3−τ1/2L−) ,

(Of )3−
L̄

= Λ̃2f3−τ1/2 , (4.27)

(Of )+3−
L̄

= Λ̃3f+3− . (4.28)

where λ+ ≡ q + q−1. As in the two-dimensional case our formulae for braided products

require to know the actions of symmetry generators on quantum space elements. The

explicit form of these acions is already known from refs. [33] and [37].

5. Four-dimensional q-deformed euclidean space

All considerations of the previous sections pertain equally to the antisymmetrized euclidean

space with four dimensions. For its definition and some basic results used in the following we

refer the reader to appendix A and ref. [37]. To begin, we introduce Grassmann integrals by

∫

f(θ4, θ3, θ2, θ1) d4
Lθ ≡ (∂θ)1(∂θ)2(∂θ)3(∂θ)4 B f(θ4, θ3, θ2, θ1)

= f1234 , (5.1)
∫

d4
Rθ f(θ1, θ2, θ3, θ4) ≡ f(θ1, θ2, θ3, θ4) C (∂̂θ)4(∂̂θ)3(∂̂θ)3(∂̂θ)2(∂̂θ)1

= f4321 . (5.2)

Using the explicit form for the action of partial derivatives (see ref. [37]), one immediately

arrives at
∫

θ4θ3θ2θ1 d4
Lθ = 1,

∫

θi d4
Lθ = 0, i = 1, . . . , 4 ,

∫

θiθj d4
Lθ = 0, (i, j) ∈ {(4, 3), (4, 2), (4, 1), (3, 2), (3, 1), (2, 1)} ,

∫

θkθlθm d4
Lθ = 0, (k, l,m) ∈ {(4, 3, 2), (4, 3, 1), (4, 2, 1), (3, 2, 1)} , (5.3)
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and
∫

d4
Rθ θ1θ2θ3θ4 = 1 ,

∫

d4
Rθ θi = 0 ,

∫

d4
Rθ θiθj = 0 , (i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} ,

∫

d4
Rθ θkθlθm = 0 , (k, l,m) ∈ {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} . (5.4)

In the same way one readily proves translational invariance, i.e.

∫

(∂θ)i B f(θ4, θ3, θ2, θ1) d4
Lθ = 0 ,

∫

d4
Rθ f(θ1, θ2, θ3, θ4) C (∂̂θ)i = 0 . (5.5)

Applying the substitutions

d4
Lθ ↔ d4

L̄θ , d4
Rθ ↔ d4

R̄θ ,

f(θ1, θ2, θ3, θ4) ↔ f(θ4, θ3, θ2, θ1) ,

θi ↔ θi′ , (∂θ)i ↔ (∂̂θ)i′ , i′ ≡ i − 5 ,

B ↔ B̄ , C ↔ C̄ , (5.6)

to all of the above expressions yields the corresponding identities for the conjugated differ-

ential calculus.

Next, we turn to superexponentials. From the dual pairings

〈(∂θ)i, θ
i〉L,R̄ = 1 , i = 1, . . . , 4, (5.7)

〈(∂θ)1(∂θ)2, θ
2θ1〉L,R̄ = 〈(∂θ)1(∂θ)3, θ

3θ1〉L,R̄

= 〈(∂θ)1(∂θ)4, θ
4θ1〉L,R̄ = 〈(∂θ)2(∂θ)3, θ

3θ2〉L,R̄

= 〈(∂θ)2(∂θ)4, θ
4θ2〉L,R̄ = 〈(∂θ)3(∂θ)4, θ

4θ3〉L,R̄ = 1 ,

(5.8)

〈(∂θ)1(∂θ)2(∂θ)3, θ
3θ2θ1〉L,R̄ = 〈(∂θ)1(∂θ)2(∂θ)4, θ

4θ2θ1〉L,R̄

= 〈(∂θ)1(∂θ)3(∂θ)4, θ
4θ3θ1〉L,R̄

= 〈(∂θ)2(∂θ)3(∂θ)4, θ
4θ3θ2〉L,R̄ = 1 , (5.9)

〈(∂θ)1(∂θ)2(∂θ)3(∂θ)4, θ
4θ3θ2θ1〉L,R̄ = 1 , (5.10)

we can deduce for the exponential

exp(θR̄ | (∂θ)L) = 1 ⊗ 1 + θ1 ⊗ (∂θ)1 + θ2 ⊗ (∂θ)2+

+ θ3 ⊗ (∂θ)3 + θ4 ⊗ (∂θ)4 + θ4θ3 ⊗ (∂θ)3(∂θ)4+

+ θ4θ2 ⊗ (∂θ)2(∂θ)4 + θ4θ1 ⊗ (∂θ)1(∂θ)4+

+ θ3θ1 ⊗ (∂θ)1(∂θ)3 + θ2θ1 ⊗ (∂θ)1(∂θ)2+
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+ θ4θ3θ2 ⊗ (∂θ)2(∂θ)3(∂θ)4 + θ4θ3θ1 ⊗ (∂θ)1(∂θ)3(∂θ)4+

+ θ4θ2θ1 ⊗ (∂θ)1(∂θ)2(∂θ)4 + θ3θ2θ1 ⊗ (∂θ)1(∂θ)2(∂θ)3+

+ θ4θ3θ2θ1 ⊗ (∂θ)1(∂θ)2(∂θ)3(∂θ)4 . (5.11)

The other types of pairings and exponentials correspond to the above expressions through

〈∂̂θ, θ〉L̄,R

i↔i′

q↔1/q
←→ 〈∂θ, θ〉L,R̄ ,

〈θ, ∂̂θ〉L̄,R

i↔i′

q↔1/q
←→ 〈θ, ∂θ〉L,R̄ , (5.12)

〈∂̂θ, θ〉L̄,R
i↔i′
←→ 〈θ, ∂̂θ〉L̄,R ,

〈∂θ, θ〉L,R̄
i↔i′
←→ 〈θ, ∂θ〉L,R̄ , (5.13)

and

exp(θR | (∂̂θ)L̄)
i↔i′

q↔1/q
←→ exp(θR̄ | (∂θ)L) ,

exp((∂̂θ)R | θL̄)
i↔i′

q↔1/q
←→ exp((∂θ)R̄ | θL) , (5.14)

exp(θR | (∂̂θ)L̄)
i↔i′
←→ exp((∂̂θ)R | θL̄) ,

exp(θR̄ | (∂θ)L)
i↔i′
←→ exp((∂θ)R̄ | θL), (5.15)

where
+↔−

q↔1/q
←→ symbolizes the transition

θi ↔ θi′ , θi ↔ θi′ , q ↔ q−1 ,

(∂θ)
i ↔ (∂̂θ)

i′ , (∂θ)i ↔ (∂̂θ)i′ , (5.16)

and
+↔−
←→ stands for one of the following two substitutions:

(a) θi ↔ ∂̂i , ∂̂i ↔ θi ,

(b) θi ↔ ∂i , ∂i ↔ θi . (5.17)

As we already know, Grassmann translations are determined by the explicit form of

the coproduct, for which we found in terms of right and left coordinates

∆L(θi) = θi
l + θj

r , i = 1, . . . , 4 , (5.18)

∆L(θjθk) = θj
l θ

k
l + θj

l θ
k
r − qθk

l θj
r + θj

rθ
k
r ,

∆L(θ1θ4) = θ1
l θ

4
l + θ1

l θ
4
r − q2θ4

l θ
1
r + θ1

rθ
4
r ,

∆L(θ2θ3) = θ2
l θ

3
l + θ2

l θ
3
r − q2θ3

l θ
2
r + θ2

rθ
3
r − q2λθ4

l θ
1
r ,

∆L(θ1θ2θ3) = θ1
l θ

2
l θ

3
l + θ1

l θ
2
l θ

3
r − q2θ1

l θ
3
l θ

2
r (5.19)

+ q2θ2
l θ

3
l θ

1
r + θ1

l θ
2
rθ

3
r − qθ2

l θ
1
rθ

3
r
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+ q3θ3
l θ

1
rθ

2
r + θ1

rθ
2
rθ

3
r − q2λθ1

l θ
4
l θ

1
r ,

∆L(θ1θaθ4) = θ1
l θ

a
l θ4

l + θ1
l θ

a
l θ4

r − qθ1
l θ

4
l θ

a
r

+ q3θa
l θ4

l θ
1
r − qθa

l θ
1
rθ

4
r + q3θ4

l θ
1
rθ

a
r

+ θ1
l θ

a
rθ4

r + θ1
rθ

a
rθ4

r ,

∆L(θ2θ3θ4) = θ2
l θ

3
l θ

4
l + θ2

l θ
3
l θ

4
r − q2θ3

l θ
2
rθ

4
r

+ q2θ4
l θ

2
rθ

3
r + θ2

l θ
3
rθ

4
r − qθ2

l θ
4
l θ

3
r

+ q3θ3
l θ

4
l θ

2
r + θ2

rθ
3
rθ

4
r − q2λθ4

l θ
1
rθ

4
r ,

∆L(θ1θ2θ3θ4) = θ1
l θ

2
l θ

3
l θ

4
l + θ1

l θ
2
l θ

3
l θ

4
r − qθ1

l θ
2
l θ

4
l θ

3
r (5.20)

+ q3θ1
l θ

3
l θ

4
l θ

2
r − q4θ2

l θ
3
l θ

4
l θ

1
r + θ1

l θ
2
l θ

3
rθ

4
r

− q2θ1
l θ

3
l θ

2
rθ

4
r + q2θ1

l θ
4
l θ

2
rθ

3
r + q2θ2

l θ
3
l θ

1
rθ

4
r

− q4θ2
l θ

4
l θ

1
rθ

3
r + q6θ3

l θ
4
l θ

1
rθ

2
r + θ1

l θ
2
rθ

3
rθ

4
r

− qθ2
l θ

1
rθ

3
rθ

4
r + q3θ3

l θ
1
rθ

2
rθ

4
r − q4θ4

l θ
1
rθ

2
rθ

3
r

+ θ1
rθ

2
rθ

3
rθ

4
r − q2λθ1

l θ
4
l θ

1
rθ

4
r ,

where

a = 2, 3 , (j, k) ∈ {(1, 2), (1, 3), (2, 4), (3, 4)}.

For the sake of completeness we wish to write down the expressions the accompanying

antipode gives on the same basis of normal ordered monomials:

SL(θi) = −θi, i = 1, . . . , 4, (5.21)

SL(θjθk) = q2θjθk,

SL(θlθmθn) = −q6θlθmθn,

SL(θ1θ2θ3θ4) = q12θ1θ2θ3θ4,

with

(j, k) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, (5.22)

(l,m, n) ∈ {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}.

The formulae for the other types of Hopf structures follow from

∆L, SL

i↔i′

q↔1/q
←→ ∆L̄, SL̄, (5.23)

∆R, SR

i↔i′

q↔1/q
←→ ∆R̄, SR̄,

∆L, SL

i↔i′

q↔1/q
←→ ∆R, SR, (5.24)

∆L̄, SL̄

i↔i′

q↔1/q
←→ ∆R̄, SR̄.

Last but not least we list expressions for braided products with supernumbers. In

general, we have

f(θ1, θ2, θ3, θ4)¯L/L̄ g = g ⊗ f ′ +
∑

K

(

(Of )
K

L/L̄
B g

)

⊗ θ K , (5.25)
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g¯R/R̄ f(θ1, θ2, θ3, θ4) = f ′ ⊗ g +
∑

K
θ K ⊗

(

g C (Of )
K

L/L̄

)

,

where the sum includes all monomials of ordering θ1θ2θ3θ4, and the operators we introduced

in the above formulae are specified by the following combinations of Uq(so4)-generators (for

their action on quantum space elements we refer again to refs. [33] and [37]):

(Of )1L = Λ̃K
1/2
1 K

1/2
2 (f1 + qλf2L

+
1 + qλf3L

+
2 (5.26)

− q2λ2f4L
+
1 L+

2 ),

(Of )2L = Λ̃K
−1/2
1 K

1/2
2 (f2 − qλf4L

+
2 ),

(Of )3L = Λ̃K
1/2
1 K

−1/2
2 (f3 − qλf4L

+
1 ),

(Of )4L = Λ̃K
−1/2
1 K

−1/2
2 f4,

(Of )12L = Λ̃2K2(f12 − qλf14L
+
2 − q2λf23L

+
2 (5.27)

− qλ2f34(L
+
2 )2),

(Of )13L = Λ̃2K1(f13 − qλf14L
+
1 + λf23L

+
1

− qλ2f24(L
+
1 )2),

(Of )14L = Λ̃2(f14 − q2λf24L
+
1 + λf34L

+
2 ),

(Of )23L = Λ̃2(f23 − qλf24L
+
1 + qλf34L

+
2 ),

(Of )24L = f24Λ̃
2K−1

1 ,

(Of )34L = f34Λ̃
2K−1

2 ,

(Of )123L = Λ̃3K
1/2
1 K

1/2
2 (f123 − qλf124L

+
1 − qλf134L

+
2 (5.28)

+ q2λ2f234L
+
1 L+

2 ),

(Of )124L = Λ̃3K
−1/2
1 K

1/2
2 (f124 − qλf234L

+
2 ),

(Of )134L = Λ̃3K
1/2
1 K

−1/2
2 (f134 + qλf234L

+
1 ),

(Of )234L = f234Λ̃
3K

−1/2
1 K

−1/2
2 ,

(Of )1234L = f1234Λ̃
4, (5.29)

and likewise for the other braiding

(Of )1L̄ = Λ̃−1f1K
−1/2
1 K

−1/2
2 , (5.30)

(Of )2L̄ = Λ̃−1K
1/2
1 K

−1/2
2 (f2 − q−1λf1L

−
1 ),

(Of )3L̄ = Λ̃−1K
−1/2
1 K

1/2
2 (f3 − q−1λf1L

−
2 ),

(Of )4L̄ = Λ̃−1K
1/2
1 K

1/2
2 (f4 + q−1λf3L

−
1 − q−1λf2L

−
2

− q−2λ2f1L
−
1 L−

2 ),

(Of )12L̄ = f12Λ̃
−2K−1

2 , (5.31)

(Of )13L̄ = f13Λ̃
−2K−1

1 ,

(Of )14L̄ = Λ̃−2(f14 + q−1λf13L
−
1 + q−3λf12L

−
2 ),
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(Of )23L̄ = Λ̃−2(f23 − q−2λf13L
−
1 + q−2λf12L

−
2 ),

(Of )24L̄ = Λ̃−2K1(f24 − λf14L
−
1 − q−1λf23L

−
1

− q−1λ2f13(L
−
1 )2),

(Of )34L̄ = Λ̃−2K2(f34 − λf14L
−
2 − qλf23L

−
2

− q−1λ2f12(L
−
2 )2),

(Of )123L̄ = f123Λ̃
−3K

−1/2
1 K

−1/2
2 , (5.32)

(Of )124L̄ = Λ̃−3K
1/2
1 K

−1/2
2 (f124 + q−1λf123L

−
1 ),

(Of )134L̄ = Λ̃−3K
−1/2
1 K

1/2
2 (f134 − q−1λf123L

−
2 ),

(Of )234L̄ = Λ̃−3K
1/2
1 K

1/2
2 (f234 − q−1λf134L

−
1 + q−1λf124L

−
2

+ q−2λ2f123L
−
1 L−

2 ),

(Of )1234L̄ = f1234Λ̃
−4. (5.33)

6. q-deformed Minkowski space

In this section we would like to focus on antisymmetrized q-Minkowski space (its definition

is given in appendix A). If such a space is fused together with its symmetrized counterpart,

it gives a q-deformed superspace useful for physical applications. Again, we start with the

introduction of Grassmann integrals:

∫

f(θ−, θ3/0, θ3, θ+) d4
Lθ ≡ −q−2∂−

θ ∂0
θ∂

3/0
θ ∂+

θ B f(θ−, θ3/0, θ3, θ+)

= f−,3/0,3+ , (6.1)
∫

d4
Rθ f(θ−, θ3/0, θ3, θ+) ≡ −q2f(θ+, θ3, θ3/0, θ−) C ∂̂+

θ ∂̂
3/0
θ ∂̂0

θ ∂̂−
θ

= f+3,3/0,− . (6.2)

A direct calculation using the explicit form for the action of partial derivatives on super-

numbers [37], shows for left superintegrals that

∫

θ−θ3/0θ3θ+ d4
Lθ = 1,

∫

θµ d4
Lθ = 0, µ ∈ {+, 3/0, 3,−},

∫

θνθρ d4
Lθ = 0,

∫

θαθβθγ d4
Lθ = 0, (6.3)

with

(ν, ρ) ∈ {(−,+), (−, 3/0), (−, 3), (3, +), (3, 3/0), (3/0, +)},

(α, β, γ) ∈ {(−, 3/0, 3), (−, 3/0,+), (−, 3, +), (3/0, 3,+)}. (6.4)
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and likewise for right superintegrals,
∫

d4
Rθ θ+θ3θ3/0θ− = 1,

∫

d4
Rθ θµ = 0, µ ∈ {+, 3, 3/0,−},

∫

d4
Rθ θνθρ = 0,

∫

d4
Rθ θαθβθγ = 0, (6.5)

where

(ν, ρ) ∈ {(+,−), (3/0,−), (3,−), (+, 3), (3, 3/0), (+, 3/0)},

(α, β, γ) ∈ {(3, 3/0,−), (+, 3/0,−), (+, 3,−), (+, 3, 3/0)}. (6.6)

In the same way we can prove translational invariance given by
∫

∂µ
θ B f(θ−, θ3/0, θ3, θ+) d4

Lθ = 0,
∫

d4
Rθ f(θ+, θ3, θ3/0, θ−) C ∂̂µ

θ = 0. (6.7)

By performing the substitutions

d4
Lθ ↔ d4

L̄θ, d4
Rθ ↔ d4

R̄θ,

f(θ−, θ3, θ3/0, θ+) ↔ f(θ+, θ3, θ3/0, θ−),

f(θ+, θ3/0, θ3, θ−) ↔ f(θ−, θ3/0, θ3, θ+),

θ± ↔ θ∓, (∂θ)
± ↔ (∂̂θ)

∓, q ↔ q−1,

B ↔ B̄, C ↔ C̄, (6.8)

we get the corresponding expressions for the conjugated differential calculus.

It is not very difficult to find out that the two bases described through the pairings

below are dual to each other:

〈∂+
θ , θ−〉L,R̄ = −q, 〈∂

3/0
θ , θ3〉L,R̄ = 1, (6.9)

〈∂0
θ , θ3/0〉L,R̄ = 1, 〈∂−

θ , θ+〉L,R̄ = −q−1,

〈∂−
θ ∂+

θ , θ−θ+〉L,R̄ = 1, 〈∂
3/0
θ ∂+

θ , θ−θ3〉L,R̄ = −q, (6.10)

〈∂−
θ ∂

3/0
θ , θ3θ+〉L,R̄ = −q−1, 〈∂0

θ∂
3/0
θ , θ3/0θ3〉L,R̄ = −q−2,

〈∂0
θ∂+

θ , θ−θ0〉L,R̄ = 2q2λ−1
+ , 〈∂−

θ ∂0
θ , θ0θ+〉L,R̄ = 2λ−1

+ ,

〈∂0
θ∂

3/0
θ ∂+

θ , θ−θ3/0θ3〉L,R̄ = q3, 〈∂−
θ ∂

3/0
θ ∂+

θ , θ−θ3θ+〉L,R̄ = 1, (6.11)

〈∂−
θ ∂0

θ∂
3/0
θ , θ3/0θ3θ+〉L,R̄ = q, 〈∂−

θ ∂0
θ∂+

θ , θ−θ0θ+〉L,R̄ = −2qλ−1
+ ,

〈∂−
θ ∂

3/0
θ ∂3

θ∂+
θ , θ−θ0θ3/0θ+〉L,R̄ = −q2. (6.12)

By virtue of these identities, the exponential is given by

exp(θR̄ | (∂θ)L) = 1 ⊗ 1 − q−1θ− ⊗ ∂+
θ + θ3 ⊗ ∂

3/0
θ + θ3/0 ⊗ ∂0

θ−
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− qθ+ ⊗ ∂−
θ + θ−θ+ ⊗ ∂−

θ ∂+
θ − q−1θ−θ3 ⊗ ∂

3/0
θ ∂+

θ −

− qθ3θ+ ⊗ ∂−
θ ∂

3/0
θ − q−2θ3/0θ3 ⊗ ∂0

θ∂
3/0
θ +

+
1

2
q−2λ+θ−θ0 ⊗ ∂0

θ∂+
θ +

1

2
λ+θ0θ+ ⊗ ∂−

θ ∂0
θ+

+ q−3θ−θ3/0θ3 ⊗ ∂0
θ∂

3/0
θ ∂+

θ + θ−θ3θ+ ⊗ ∂−
θ ∂

3/0
θ ∂+

θ +

+ q−1θ3/0θ3θ+ ⊗ ∂−
θ ∂0

θ∂
3/0
θ −

1

2
q−1λ+θ−θ0θ+ ⊗ ∂−

θ ∂0
θ∂+

θ −

− q2θ−θ3/0θ3θ+ ⊗ ∂−
θ ∂0

θ∂
3/0
θ ∂+

θ . (6.13)

Furthermore, we have the crossing symmetries through

〈∂̂θ, θ〉L̄,R

+↔−

q↔1/q
←→ 〈∂θ, θ〉L,R̄ ,

〈θ, ∂̂θ〉L̄,R

+↔−

q↔1/q
←→ 〈θ, ∂θ〉L,R̄ , (6.14)

〈∂̂θ, θ〉L̄,R
+↔−
←→ 〈θ, ∂̂θ〉L̄,R ,

〈∂θ, θ〉L,R̄
+↔−
←→ 〈θ, ∂θ〉L,R̄ , (6.15)

and

exp(θR | (∂̂θ)L̄)
+↔−

q↔1/q
←→ exp(θR̄ | (∂θ)L) ,

exp((∂̂θ)R | θL̄)
+↔−

q↔1/q
←→ exp((∂θ)R̄ | θL) , (6.16)

exp(θR | (∂̂θ)L̄)
+↔−
←→ exp((∂̂θ)R | θL̄) ,

exp(θR̄ | (∂θ)L)
+↔−
←→ exp((∂θ)R̄ | θL) , (6.17)

where the transition symbols have the very same meaning as in section 4.

Next we would like to provide formulae for the coproduct of Grassmann variables. On

a basis of normal ordered monomials we have found

∆L(θµ) = θµ
l + θµ

r , µ ∈ {+, 3/0, 0,−, }, (6.18)

∆L(θ+θ3/0) = θ+
l θ

3/0
l + θ+

l θ3/0
r − q−2θ

3/0
l θ+

r + θ+
r θ3/0

r , (6.19)

∆L(θ+θ0) = θ+
l θ0

l + θ+
l θ0

r − θ0
l θ

+
r + θ+

r θ0
r+

+ λλ−1
+ θ+

l θ3/0
r − q−2λλ−1

+ θ
3/0
l θ+

r ,

∆L(θ+θ−) = θ+
l θ−l + θ+

l θ−r − q−2θ−l θ+
r + θ+

r θ−r +

+ q−1λλ−1
+ θ

3/0
l θ3/0

r ,

∆L(θ3/0θ0) = θ
3/0
l θ0

l + θ
3/0
l θ0

r − q−2θ0
l θ

3/0
r + θ3/0

r θ0
r+

+ λλ−1
+ θ

3/0
l θ3/0

r − q−2λθ−l θ+
r ,

∆L(θ3/0θ−) = θ
3/0
l θ−l + θ

3/0
l θ−r − q−2θ−l θ3/0

r + θ3/0
r θ−r ,

∆L(θ0θ−) = θ0
l θ

−
l + θ0

l θ
−
r − θ−l θ0

r + θ0
rθ

−
r +
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+ λλ−1
+ θ

3/0
l θ−r − q−2λλ−1

+ θ−l θ3/0
r ,

∆L(θ+θ3/0θ0) = θ+
l θ

3/0
l θ0

l + θ+
l θ

3/0
l θ0

r − q−2θ+
l θ0

l θ
3/0
r + (6.20)

+ q−2θ
3/0
l θ0

l θ
+
r + θ+

l θ3/0
r θ0

r − q−2θ
3/0
l θ+

r θ0
r + q−2θ0

l θ
+
r θ3/0

r +

+ θ+
r θ3/0

r θ0
r + q−1λθ+

l θ
3/0
l θ3/0

r − q−2λθ+
l θ−l θ+

r ,

∆L(θ+θ3/0θ−) = θ+
l θ

3/0
l θ−l + θ+

l θ
3/0
l θ−r − q−2θ+

l θ−l θ3/0
r + q−4θ

3/0
l θ−l θ+

r +

+ θ+
l θ3/0

r θ−r − q−2θ
3/0
l θ+

r θ−r + q−4θ−l θ+
r θ3/0

r + θ+
r θ3/0

r θ−r ,

∆L(θ+θ0θ−) = θ+
l θ0

l θ
−
l + θ+

l θ0
l θ

−
r − θ+

l θ−l θ0
r + q−2θ0

l θ
−
l θ+

r +

+ θ+
l θ0

rθ
−
r − θ0

l θ
+
r θ−r + q−2θ−l θ+

r θ0
r + θ+

r θ0
rθ

−
r +

+ λλ−1
+ θ+

l θ
3/0
l θ−r + q−1λλ−1

+ θ
3/0
l θ0

l θ
3/0
r +

+ q−4λλ−1
+ θ

3/0
l θ−l θ+

r + qλ(qλ − 2)θ+
l θ−l θ3/0

r +

+ λλ−1
+ θ+

l θ3/0
r θ−r − 2q−2λλ−1

+ θ
3/0
l θ+

r θ−r −

− q−1λλ−1
+ θ

3/0
l θ3/0

r θ0
r + q−4λλ−1

+ θ−l θ+
r θ3/0

r ,

∆L(θ3/0θ0θ−) = θ
3/0
l θ0

l θ
−
l + q−4θ0

l θ
−
l θ3/0

r − θ
3/0
l θ−l θ0

r−

− q−2θ0
l θ

3/0
r θ+

r + q−2θ−l θ3/0
r θ0

r + θ3/0
r θ0

rθ
−
r +

+ q−3λθ
3/0
l θ−l θ3/0

r + q−2λθ−l θ+
r θ−r ,

∆L(θ+θ3/0θ0θ−) = θ+
l θ

3/0
l θ0

l θ
−
l + θ+

l θ
3/0
l θ0

l θ
−
r − θ+

l θ
3/0
l θ−l θ0

r− (6.21)

− q−4θ
3/0
l θ0

l θ
−
l θ+

r + q−4θ+
l θ0

l θ
−
l θ3/0

r + θ+
l θ

3/0
l θ0

rθ
−
r −

− q−2θ+
l θ0

l θ
3/0
r θ−r + q−2θ+

l θ−l θ3/0
r θ0

r + q−2θ
3/0
l θ0

l θ
+
r θ−r −

− q−4θ
3/0
l θ−l θ+

r θ0
r + q−6θ0

l θ
−
l θ+

r θ3/0
r + θ+

l θ3/0
r θ0

rθ
−
r −

− q−2θ
3/0
l θ+

r θ0
rθ

−
r + q−2θ0

l θ
+
r θ3/0

r θ−r + q−4θ−l θ+
r θ3/0

r θ0
r+

+ θ+
r θ3/0

r θ0
rθ

−
r − 3q4λλ−1

+ θ+
l θ

3/0
l θ−l θ0

r+

+ q−2λλ−1
+ θ+

l θ
3/0
l θ3/0

r θ−r − q−2λθ+
l θ−l θ+

r θ−r −

− q6λλ−1
+ θ

3/0
l θ−l θ+

r θ3/0
r + q−2λλ−1

+ θ
3/0
l θ+

r θ3/0
r θ−r .

The expressions for the corresponding antipodes of our normal ordered monomials are:

SL(θµ) = −θµ, µ ∈ {+, 3/0, 0,−},

SL(θνθρ) = q−2θνθρ,

SL(θαθβθγ) = −q−6θαθβθγ,

SL(θ+θ3/0θ0θ−) = q−12θ+θ3/0θ0θ−, (6.22)

where

(ν, ρ) ∈ {(+,−), (3/0,−), (0,−), (+, 0), (3/0, 0), (+, 3/0)},

(α, β, γ) ∈ {(+, 3/0, 0), (+, 3/0,−), (+, 0,−), (3/0, 0,−)}. (6.23)
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Notice that monomials with unspecified indices have to refer to the ordering θ+θ3/0θ0θ−.

In complete analogy to the previous sections, one can check the crossing symmetries

∆L, SL

+↔−

q↔1/q
←→ ∆L̄, SL̄,

∆R, SR

+↔−

q↔1/q
←→ ∆R̄, SR̄, (6.24)

∆L, SL

+↔−

q↔1/q
←→ ∆R, SR,

∆L̄, SL̄

+↔−

q↔1/q
←→ ∆R̄, SR̄. (6.25)

Finally, let us come to expressions for braided products concerning supernumbers.

Such braided products can be calculated from

f(θ+, θ3/0, θ0, θ−)¯L/L̄ g = g ⊗ f ′ +
∑

K

(

(Of )
K

L/L̄
B g

)

⊗ θ K ,

g¯R/R̄ f(θ+, θ3/0, θ0, θ−) = f ′ ⊗ g +
∑

K
θ K ⊗

(

g C (Of )
K

L/L̄

)

. (6.26)

For brevity, we introduced the following combinations of symmetry generators (for their

action on quantum spaces see again refs. [33] and [37]):

(Of )+L = Λ̃(τ3)−1/2
[

f+ σ2 − q1/2λλ
1/2
+ f3/0 S1− (6.27)

− λ2f− T−S1 + q1/2λλ
−1/2
+ f0 (T−σ2 + qS1)

]

,

(Of )
3/0
L = Λ̃

[

−q3/2λλ
−1/2
+ f+ T 2 + f3/0 τ1−

− λ−1
+ f0 (λ2T−T 2 + q(τ1 − σ2))+

+ q−1/2f− λλ
−1/2
+ (τ1T− − q−1S1)

]

,

(Of )0L = Λ̃(f0 σ2 − q−1/2λλ
1/2
+ f− S1),

(Of )−L = Λ̃(τ3)1/2(−q5/2λλ
−1/2
+ f0 T 2 + f− τ1),

(Of )
+,3/0
L = Λ̃2(τ3)−1/2

[

f+,3/0 + q−1λ−1
+ f+0 ((σ2)2 − 1)+

+ q−1/2λλ
−1/2
+ f+− (T− − q−1S1σ2)−

− q−1/2λλ
−1/2
+ f3/0,0 (q−1T− + s1σ2)+

+ q−1λ2f3/0,− (S1)2+

+ λ2λ+f0− ((T−)2 − q−2(S1)2)
]

,

(Of )+0
L = Λ̃2(τ3)−1/2

[

f+0 (σ2)2 − q−1/2λλ
1/2
+ f+− S1σ2)−

− q1/2λλ
1/2
+ f3/0,0 S1σ2 + λ2λ+f3/0,− (S1)2−

− q−1λ2f0− (S1)2
]

,

(Of )+−
L = Λ̃2

[

−q1/2λλ
−1/2
+ f+0 T 2σ2 + f+− (1 + λ2T 2S1)+
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+ qλ2f3/0,0 T 2S1 − q−3/2λλ
1/2
+ f3/0,− τ1S1+

+ q1/2λλ
−1/2
+ f0− (T− + q−3τ1S1)

]

,

(Of )
3/0,0
L = Λ̃2

[

(−q3/2λλ
−1/2
+ f+0 T 2σ2 + qλ2f+− T 2S1)+

+ f3/0,0 (1 + q2λ2T 2S1) − q−1/2λλ
1/2
+ f3/0,− τ1S1+

+ q−1/2λλ
−1/2
+ f0− (T− + q−1τ1S1)

]

,

(Of )
3/0,−
L = Λ̃2(τ3)1/2

[

q6λ2λ−1
+ f+0 (T 2)2−

− q7/2λλ
−1/2
+ f+− T 2τ1 + q9/2λλ

−1/2
+ f3/0,0 T 2τ1+

+ f3/0,− (τ1)2 + q−1λ−1
+ f0− (1 − (τ1)2)

]

,

(Of )0−L = Λ̃2(τ3)−1/2f0−,

(Of )
+,3/0,0
L = Λ̃3(τ3)−1/2

[

f+,3/0,0 σ2 − q−1/2λλ
−1/2
+ f+,3/0,− S1−

− q1/2λλ
−1/2
+ f+0− (qT−σ2 + q−1(q3 − λ+)S1)+

+ λ2f3/0,0,− T−S1
]

,

(Of )
+,3/0,−
L = Λ̃3

[

−q5/2λλ
−1/2
+ f+,3/0,0 T 2 + f+,3/0,− τ1+

+ λ−1
+ f+0− (q2λ2T−T 2 + q−1(1 − q3λ)(σ2 − τ1))+

+ q−3/2λλ
−1/2
+ f3/0,0,− (T−τ1 + (q3 − λ+)S1)

]

,

(0f )+0−
L = Λ̃3(f+0− σ2 − q−3/2λλ

1/2
+ f3/0,0,− S1),

(Of )
3/0,0−
L = Λ̃3(τ3)1/2(−q7/2λλ

−1/2
+ f+0− T 2 + f3/0,0,− τ1),

(Of )
+,3/0,0−
L = f+,3/0,0−Λ̃4, (6.28)

and

(Of )+
L̄

=Λ̃−1(f+ σ2 − q−1/2λλ
−1/2
+ f0 S1), (6.29)

(Of )
3/0

L̄
=Λ̃−1(τ3)−1/2

[

−q1/2λλ
−1/2
+ f+ (T+σ2 + qτ3T 2)+

+ f3/0 σ2 + f0 (λ2T+S1 + q−1(τ3τ1 − σ2))−

− q1/2λλ
−1/2
+ f− S1

]

,

(Of )0L̄ =Λ̃−1(τ3)1/2(−q1/2λλ
1/2
+ f+ T 2 + f0(τ

3)−1τ1),

(Of )−
L̄

=Λ̃−1
[

q2λ2f+ T 2T+ − q3/2λλ
1/2
+ f3/0 T 2−

− q1/2λλ
−1/2
+ f0 (qT+τ1 − T 2)) + f− τ1

]

,

(Of )
+,3/0

L̄
=Λ̃−2(τ3)−1/2

[

f+,3/0 (σ2)2 + q−1λ−1
+ f+0 (τ3 − (σ2)2)−

− q1/2λλ
−1/2
+ f+− S1σ2 + q−1/2λλ

−1/2
+ f3/0,0 S1σ2+
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+ q2λ2λ−1
+ f0− (S1)2)

]

,

(Of )+0
L̄

=Λ̃−2(τ3)1/2f+0 ,

(Of )+−
L̄

=Λ̃−2
[

−q3/2λλ
1/2
+ f+,3/0 T 2σ2+

+ q1/2λλ
−1/2
+ f+0 (T 2σ2 − qT+) + f+−(1 + q2λ2T 2S1)−

− qλ2f3/0,0 T 2S1 − q3/2λλ
−1/2
+ f0− τ1S1

]

,

(Of )
3/0,0

L̄
=Λ̃−2

[

q1/2λλ
1/2
+ f+,3/0 T 2σ2−

− qλ2f+− T 2S1 + f3/0,0 (1 + λ2T 2S1)+

+ λλ+−1/2f+0 (q1/2 τ1S1 − q−1/2 (T 2σ2 + q3T+))
]

,

(Of )
3/0,−

L̄
=Λ̃−2(τ3)1/2

[

q3λ2f+,3/0 (T 2)2+

+ q2λ2λ−1
+ f+0 ((τ3)−1(T+)2 − (T 2)2)−

− q1/2λλ
−1/2
+ f+− ((τ3)−1T+ + qT 2τ1)+

+ q1/2λλ
−1/2
+ f3/0,0 (T 2τ1 − q(τ3)−1T+)−

− q−1λ−1
+ f0− (1 − (τ1)2)

]

,

(Of )0−
L̄

=Λ̃−2(τ3)1/2
[

q4λ2λ+f+,3/0 (T 2)2 − q3λ2f+0 (T 2)2−

− q5/2λλ+1/2f+− T 2τ1 + q3/2λλ+1/2f3/0,0 T 2τ1 + f0− (τ1)2
]

,

(Of )
+,3/0,0

L̄
=Λ̃−3(f+,3/0,0 σ2 + q1/2λλ

−1/2
+ f+0− S1)

(Of )
+,3/0,−

L̄
=Λ̃−3(τ3)1/2

[

q1/2λλ
1/2
+ f+,3/0,0 (T 2 − q(τ3)−1T+σ2)+

+ f+,3/0,− (τ3)−1σ2 + q3/2λλ
−1/2
+ f3/0,0− (τ3)−1S1−

− λ−1
+ f+0− (q−1(τ3)−1σ2 − τ1 + q2λ2(τ3)−1T+S1)

]

,

(Of )+0−
L̄

=Λ̃−3(τ3)1/2(q3/2λλ
1/2
+ f+,3/0,0 T 2 + f+0− τ1),

(Of )
3/0,0−

L̄
=Λ̃−3

[

−q4λ2f+,3/0,0 T+T 2 + q1/2λλ
1/2
+ f+,3/0,− T 2−

− q1/2λλ
−1/2
+ f+0− (q−1T 2 + q2T+τ1) + f3/0,0,− τ1

]

,

(Of )
+,3/0,0−

L̄
=Λ̃−4f+,3/0,0−. (6.30)

7. Conclusion

Let us end with a few comments on our results. In the last four sections we have provided

q-analogs for elements of superanalysis. In doing so we have realized that on q-deformed

quantum spaces Grassmann integrals, Grassmann exponentials and Grassmann transla-

tions can be constructed in complete analogy to the classical case. That this analogy is a

really far reaching one can also be seen from the fact that translational invariance of our
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integrals implies rules for integration by parts:
∫

f(θ) [(∂θ)A B g(θ)] dn
Lθ =

∫

[f(θ) C (∂θ)A] g(θ) dn
Lθ,

∫

dn
Rθ [f(θ) C (∂θ)A] g(θ) =

∫

dn
Rθ f(θ) [(∂θ)A B g(θ)] . (7.1)

For this to verify, one has to take into account that

f(∂ B g) = ∂(2) B [(f C ∂(1))g],

(f C ∂)g = [f(∂(1) B g)] C ∂(2). (7.2)

Furthermore, it should be stressed that translational invariance of our Grassmann integrals

can alternatively be expressed as
(

1 ⊗

∫

·dn
Lθ

)

◦ ∆R̄f(θ) =

(
∫

·dn
Lθ ⊗ 1

)

◦ ∆R̄f(θ)

=

∫

f(θ) dn
Lθ, (7.3)

(

1 ⊗

∫

dn
Rθ·

)

◦ ∆Lf(θ) =

(
∫

dn
Rθ · ⊗1

)

◦ ∆Lf(θ)

=

∫

dn
Rθ f(θ). (7.4)

The above statements can be proved in a straightforward manner by insertion of the explicit

expressions for superintegral and coproduct. Let us also notice that in ref. [40] this property

was taken as abstract definition for an integral on quantum spaces. In our case, integrals

are given by explicit instructions being compatible with the requirement of translational

invariance.

Next, let us make contact with q-analogs of δ-functions. For a δ-function on q-deformed

Grassmann algebras we require to hold:
∫

f(θ) δn
L̄/L(θ) dn

L̄/Lθ =

∫

δn
L̄/L(θ) f(θ) dn

L̄/Lθ = f ′,
∫

dn
R̄/Rθ f(θ) δn

R̄/R (θ) =

∫

dn
R̄/Rθ δn

R̄/R(θ) f(θ) = f ′. (7.5)

It is not very difficult to show that these requirements are satisfied by

(a) (quantum plane)

δ2
L(θ) = δ2

R̄(θ) = θ2θ1,

δ2
L̄(θ) = δ2

R(θ) = θ1θ2, (7.6)

(b) (three-dimensional euclidean space)

δ3
L(θ) = δ3

R̄(θ) = θ+θ3θ−,

δ3
L̄(θ) = δ3

R(θ) = θ−θ3θ+, (7.7)
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(c) (four-dimensional euclidean space)

δ4
L(θ) = δ4

R̄(θ) = θ4θ3θ2θ1,

δ4
L̄(θ) = δ4

R(θ) = θ1θ2θ3θ4, (7.8)

(d) (q-deformed Minkowski space)

δ4
L(θ) = θ−θ3/0θ3θ+, δ4

R(θ) = θ+θ3θ3/0θ−,

δ4
L̄(θ) = θ+θ3/0θ3θ−, δ4

R̄(θ) = θ−θ3θ3/0θ+. (7.9)

Last but not least we would like to say a few words about the connection between

q-deformed superexponentials and translations of q-deformed supernumbers. That trans-

lations on quantum spaces are indeed given by the coproduct can also be seen from the

existence of some sort of q-deformed Taylor rules for which we have [44]

f(ψ⊕L θ) = exp(ψR | (∂̂θ)L̄) .̄ f(θ),

f(ψ⊕L̄ θ) = exp(ψR̄ | (∂θ)L) . f(θ), (7.10)

f(θ⊕R̄ ψ) = f(θ) / exp((∂̂θ)R | ψL̄),

f(θ⊕R ψ) = f(θ) /̄ exp((∂θ)R̄ | ψL). (7.11)

Again, these identities can be verified in a straightforward manner making use of the explicit

form for the superexponentials and the action of derivatives on antisymmetrized quantum

spaces.
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A. Quantum spaces

In this appendix we list for the quantum spaces under consideration the explicit form of

their defining relations and the non-vanishing elements of their quantum metrics.

The coordinates of two-dimensional antisymmetrized Manin plane fulfill the relation

[38, 47]

θ1θ2 = −q−1θ2θ1. (A.1)

The q-deformed spinor metric is given by a matrix εij with non-vanishing elements

ε12 = q−1/2, ε21 = −q1/2. (A.2)
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Indices can be raised and lowered as usual, i.e.

θα = εαβθβ, θα = εαβθβ, (A.3)

where εij = −εij.

The commutation relations defining an antisymmetrized version of three-dimensional

q-deformed euclidean space read

(θ+)2 = (θ−)2 = 0,

(θ3)2 = λθ+θ−,

θ+θ− = −θ−θ+,

θ±θ3 = −q±2θ3θ±. (A.4)

The non-vanishing elements of the corresponding quantum metric are

g+− = −q, g33 = 1, g−+ = −q−1. (A.5)

Covariant coordinates can be introduced by

θA = gABθB, (A.6)

with gAB being the inverse of gAB .

For antisymmetrized q-deformed euclidean space with four dimensions we have the

relations

(θi)2 = 0, i = 1, . . . , 4,

θ1θ2 = −q−1θ2θ1,

θ1θ3 = −q−1θ3θ1,

θ2θ4 = −q−1θ4θ2,

θ3θ4 = −q−1θ3θ4,

θ1θ4 = −θ4θ1,

θ2θ3 = −θ3θ2 + λθ1θ4, (A.7)

and its metric has the non-vanishing components

g14 = q−1, g23 = g32 = 1, g41 = q. (A.8)

The generators of antisymmetrized q-deformed Minkowski space [16, 17, 21] are subject

to the relations

(θµ)2 = 0, µ ∈ {+,−, 0},

θ3θ± = −q∓2θ±θ3,

θ3θ3 = λθ+θ−,

θ+θ− = −θ−θ+,
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θ±θ0 + θ0θ± = ±q∓1λθ±θ3,

θ0θ3 + θ3θ0 = λθ+θ−. (A.9)

Instead of dealing with the coordinate θ3 or θ0 it is often more convenient to work with

the light-cone coordinate θ3/0 = θ3 − θ0, for which we have the additional relations

(θ3/0)2 = 0,

θ±θ3/0 = −θ3/0θ±,

θ0θ3/0 + θ3/0θ0 = −λθ+θ−,

θ±θ0 + q±2θ0θ± = ±q±1λθ±θ3/0,

θ3θ3/0 + θ3/0θ3 = −λθ+θ−. (A.10)

Finally, we write down the non-vanishing entries of the matrix representing q-deformed

Minkowski metric:

η00 = −1, η33 = 1, η+− = −q, η−+ = −q−1. (A.11)
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